HOMEWORK 1 - ANSWERS TO MOST PROBLEMS

PEYAM RYAN TABRIZIAN

SECtion 1.1: Four ways to Represent functions
1.1.7. No (by the vertical line test)
1.1.8. Yes (by the vertical line test), Domain $=[-2,2]$, Range $=[-1,2]$

1.1.22.

(a) The graph of $x(t)$ should just be a line going through the origin
(b) The graph of $y(t)$ should look at first like the right half of a parabola, then should be constant for a while, and then look like the left half of a parabola
(c) The graph of the horizontal velocity looks like a horizontal line
(d) See announcement on bspace for a detailed solution! The picture you get is:
1.1.54. $f(x)=2+\sqrt{4-x^{2}}$ (we chose the positive square root because we want the top half of the circle)
1.1.63. $V(x)=x(20-2 x)(12-2 x)$ (no need to expand the answer!)
1.1.69. f is odd, g is even

Section 1.2: Mathematical models: a catalog of essential functions
1.2.2.
(a) Exponential function
(b) Power function
(c) Polynomial of degree 5
(d) Trigonometric function
(e) Rational function
(f) Algebraic function
1.2.4.
(a) G
(b) f
(c) F
(d) g
1.2.8. (a) $y=2(x-3)^{2}$, (b) $y=-x^{2}-\frac{5}{2} x+1$

[^0]1A/Math 1A Summer/Solution Bank/Vertical Velocity.png

1.2.16.

(a) $C(x)=13 x+900$ (C is the cost and x is the number of chairs produced)
(b) 13; Cost per chair
(c) 900; Start-up cost (i.e. money needed to buy machines in order to start producing chairs)

SECtion 1.3: New functions from old functions
1.3.1.
(a) $y=f(x)+3$
(b) $y=f(x)-3$
(c) $y=f(x-3)$
(d) $y=f(x+3)$
(e) $y=-f(x)$
(f) $y=f(-x)$
(g) $y=3 f(x)$
(h) $y=\frac{1}{3} f(x)$
1.3.7. $y=-\sqrt{3(x+4)-(x+4)^{2}}-1$
1.3.14. Basically compress the graph of $\sin (x)$ horizontally by a factor of 3 (notice that the new period now is $\frac{2 \pi}{3}$ and then stretch the resulting graph vertically by a factor of 4 (so the new graph has range $[-4,4]$ instead of $[-1,1]$)

1.3.30.

(a) $(f+g)(x)=\sqrt{3-x}+\sqrt{x^{2}-1}$
(b) $(f-g)(x)=\sqrt{3-x}+\sqrt{x^{2}-1}$
(c) $(f g)(x)=\sqrt{3-x} \times \sqrt{x^{2}-1}$
(d) $\left(\frac{f}{g}\right)(x)=\frac{\sqrt{3-x}}{\sqrt{x^{2}-1}}$

All of those functions have domain $(-\infty,-1] \cup[1,3]$ EXCEPT for (d), which has domain $(-\infty,-1) \cup(1,3]$
1.3.36.
(a) $(f \circ g)(x)=\frac{\sin (2 x)}{1+\sin (2 x)} ; \operatorname{Dom}=-\frac{\pi}{4}+\pi m$
(b) $(g \circ f)(x)=\sin \left(\frac{2 x}{1+x}\right) ;$ Dom $=$ all real numbers except -1
(c) $(f \circ f)(x)=\frac{\frac{x}{1+x}}{1+\frac{x}{1+x}}=\frac{x}{1+2 x}$; Dom $=$ all real numbers except $\frac{-1}{2}$ and -1
(d) $(g \circ g)(x)=\sin (2 \sin (2 x)) ;$ Dom $=$ all real numbers

Section 1.4: Graphing Calculators and Computers

Don't worry about this section, it's not very important and it won't be on the exam!

Section 1.5: Exponential Functions

1.5.2. (a) 16 ; (b) $27 x^{7}$
1.5.4. (a) $x^{4 n-3}$; (b) $a^{\frac{1}{6}} b^{-\frac{1}{12}}$
1.5.17.
(a) $y=e^{x}-2$
(b) $y=e^{x-2}$
(c) $y=e^{-x}$
(d) $y=-e^{x}$
(e) $y=-e^{-x}$
1.5.20. (a) All real numbers ; (b) All ≤ 0 real numbers
1.5.21. $f(x)=3 \cdot 2^{x}$

[^0]: Date: Friday, September 6th, 2013.

