HOMEWORK 1 - ANSWERS TO MOST PROBLEMS

PEYAM RYAN TABRIZIAN

Section 1.1: Four ways to represent functions

1.1.7. No (by the vertical line test)

1.1.8. Yes (by the vertical line test), Domain = [-2, 2], Range = [-1, 2]

1.1.22.

- (a) The graph of x(t) should just be a line going through the origin
- (b) The graph of y(t) should look at first like the right half of a parabola, then should be constant for a while, and then look like the left half of a parabola
- (c) The graph of the horizontal velocity looks like a horizontal line
- (d) See announcement on b
space for a detailed solution! The picture you get is:

1.1.54. $f(x) = 2 + \sqrt{4 - x^2}$ (we chose the positive square root because we want the top half of the circle)

1.1.63. V(x) = x(20 - 2x)(12 - 2x) (no need to expand the answer!)

1.1.69. f is odd, g is even

Section 1.2: Mathematical models: A catalog of essential functions

1.2.2.

- (a) Exponential function
- (b) Power function
- (c) Polynomial of degree 5
- (d) Trigonometric function
- (e) Rational function
- (f) Algebraic function

1.2.4.

- (a) G
- (b) f
- (c) F
- $(d) \ g$

1.2.8. (a) $y = 2(x-3)^2$, (b) $y = -x^2 - \frac{5}{2}x + 1$

Date: Friday, September 6th, 2013.

1.2.16.

- (a) C(x) = 13x + 900 (C is the cost and x is the number of chairs produced)
- (b) 13; Cost per chair
- (c) 900; Start-up cost (i.e. money needed to buy machines in order to *start* producing chairs)

Section 1.3: New functions from old functions

1.3.1.

(a)	y = f(x) + 3
(b)	y = f(x) - 3
(c)	y = f(x - 3)
(d)	y = f(x+3)
(e)	y = -f(x)
(f)	y = f(-x)
(g)	y = 3f(x)
(h)	$y = \frac{1}{3}f(x)$

1.3.7. $y = -\sqrt{3(x+4) - (x+4)^2} - 1$

1.3.14. Basically compress the graph of sin(x) horizontally by a factor of 3 (notice that the new period now is $\frac{2\pi}{3}$ and then stretch the resulting graph vertically by a factor of 4 (so the new graph has range [-4, 4] instead of [-1, 1])

1.3.30.

- (a) $(f+g)(x) = \sqrt{3-x} + \sqrt{x^2-1}$ (a) $(f + g)(x) = \sqrt{3 - x} + \sqrt{x^2 - 1}$ (b) $(f - g)(x) = \sqrt{3 - x} + \sqrt{x^2 - 1}$ (c) $(fg)(x) = \sqrt{3 - x} \times \sqrt{x^2 - 1}$ (d) $\left(\frac{f}{g}\right)(x) = \frac{\sqrt{3 - x}}{\sqrt{x^2 - 1}}$

All of those functions have domain $(-\infty, -1] \cup [1, 3]$ **EXCEPT** for (d), which has domain $(-\infty, -1) \cup (1, 3]$

1.3.36.

(a)
$$(f \circ g)(x) = \frac{\sin(2x)}{1+\sin(2x)}$$
; Dom $= -\frac{\pi}{4} + \pi m$
(b) $(g \circ f)(x) = \sin\left(\frac{2x}{1+x}\right)$; Dom $=$ all real numbers except -1
(c) $(f \circ f)(x) = \frac{\frac{x}{1+x}}{1+\frac{x}{1+x}} = \frac{x}{1+2x}$; Dom $=$ all real numbers except $\frac{-1}{2}$ and -1

(d) $(g \circ g)(x) = \sin(2\sin(2x))$; Dom = all real numbers

Section 1.4: Graphing Calculators and Computers

Don't worry about this section, it's not very important and it won't be on the exam!

Section 1.5: Exponential Functions

1.5.2. (a) 16; (b)
$$27x^7$$

1.5.4. (a) x^{4n-3} ; (b) $a^{\frac{1}{6}}b^{-\frac{1}{12}}$
1.5.17.
(a) $y = e^x - 2$
(b) $y = e^{x-2}$
(c) $y = e^{-x}$
(d) $y = -e^x$

(e) $y = -e^{-x}$

1.5.20. (a) All real numbers ; (b) All ≤ 0 real numbers

1.5.21. $f(x) = 3 \cdot 2^x$